Stochastic Rendering of Density Fields

Jos Stam

Department of Computer Science
University of Toronto
Toronto, Canada

Stochastic Models

Phenomenon modelled as a random field $\rho(\mathbf{x},t)$ Random field is determined by its second-order statistics:

- Mean $\mu(\mathbf{x},t) = \langle \rho(\mathbf{x},t) \rangle$
- Structure (covariance)

$$C_{\rho}(\mathbf{x}, t; \mathbf{x}', t') = \langle \rho(\mathbf{x}, t) \rho(\mathbf{x}', t') \rangle - \mu(\mathbf{x}, t) \mu(\mathbf{x}', t')$$

Homogeneous random fields satisfy

$$\mu(\mathbf{x},t) = \text{constant}$$

$$C_{\rho}(\mathbf{x},t;\mathbf{x}',t')=C_{\rho}(\mathbf{x}'-\mathbf{x},t'-t)$$

Realization of a Random Field

Statistics do not define a single function

Rendering of Stochastic Models

Traditionally:

- Generate realization of stochastic model
- Render realization

Disadvantages:

- Rendering computationally expensive
- Sampling problem

Stochastic Rendering

Model intensity field as a random function

- Calculate statistics of intensity field from
 - * Statistics of the stochastic model
 - * Illumination equation
- Generate a realization of the intensity field

Analogy with texture mapping

Examples of Stochastic Rendering

Surface reflectance models

- Mean value Torrance and Sparrow 67 & He et al 91
- Correlation Krueger 88

Rendering of clouds Gardner 85

- Illumination equation not physics-based
- No true volume rendering (surface-based)

Stochastic Model for Density Fields

Observations:

- Mean value is "blobby-like"
- Variance depends on the mean
- -> cannot use homogeneous random fields

Transformation of a Homogeneous Field

$$\rho(\mathbf{x},t) = f(\mathbf{x},t) + g(\mathbf{x},t)q(\mathbf{x},t)$$

Statistics of the transformation are known $\langle q \rangle = 0$

- mean $= f(\mathbf{x}, t)$
- covariance = $C_q(\mathbf{x}' \mathbf{x}, t' t)q(\mathbf{x}, t)q(\mathbf{x}', t')$

Illumination Model

$$I_{observer} = au I_{background} + (1 - au)I_{gas}$$

Transparency

Illumination due to the gas is smooth and can be calculated using mean density

- → only the transparency is random
- → determine statistics of

$$\tau(0,b) = \exp\left(-\int_0^b \rho(\mathbf{x}_0 + uD) \ du\right)$$

Statistical Equations

Assume orthographic projection

Determine mean and covariance of the function

$$T(x,y) = \int_0^b \rho(x,y,u) \ du$$

Statistics of T(x, y)

- mean $F(x,y) = \int_0^b f(x,y,u) dt$
- variance $G(x,y) = \int_0^b g(x,y,u) du$
- covariance $= C_q(x'-x,y'-y,0)G(x,y)G(x',y')$

$$\Longrightarrow T(x,y) = F(x,y) + G(x,y)Q(x,y)$$

where Q can be any "slice" of the field $q(x,y,z^*)$

Compare with

$$\rho(x,y,z) = f(x,y,z) + g(x,y,z)q(x,y,z)$$

Computation of T(x, y)

Mean F and variance G are both integrals of the blobby fields f and g \rightarrow efficient computation see Stam & Fiume 93

Compute Q(x,y) by sampling $q(x,y,z^*)$ consistently Possible choice: $z^* = \text{point nearest to blob on the ray}$

→ image and frame to frame coherence

Overview of Rendering Algorithm

```
T=0 for each blob intersecting ray do Calculate F and G Calculate Q by sampling q at midpoint Update integral: T=T+F+GQ end for
```

 $I_{background}$ obtained from standard ray-tracer Calculate transparency: $au = \exp(-T)$ Calculate I_{gas} from mean density f only Combine: $I = au I_{background} + (1- au)I_{gas}$

Results

Clouds

- Single cloud
- Group of clouds
- Interaction with objects (CN Tower)
- Frame to frame coherence (Fly through)

Fire

