On the Velocity of an Implicit Surface

Jos Stam and Ryan Schmidt

Autodesk, Inc. University of Toronto Toronto, Canada

Research in Industry

Cool Math \rightarrow Application

Application \rightarrow Cool Math

Research in Industry

Cool Math \rightarrow Application

Application \rightarrow Cool Math

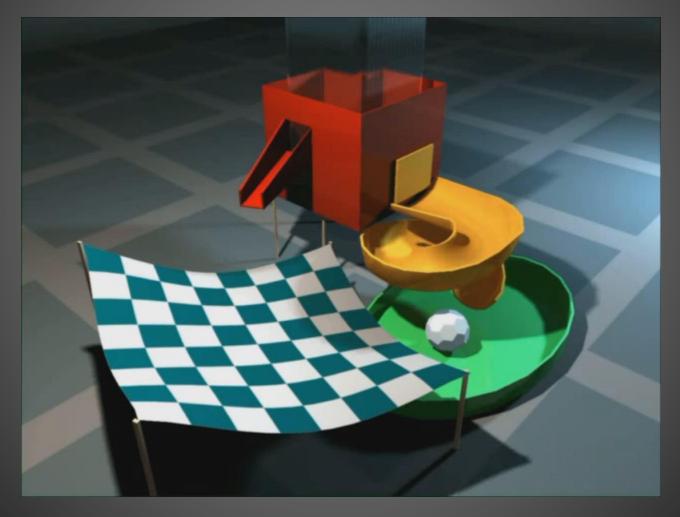
Motivation

Nucleus

nParticles

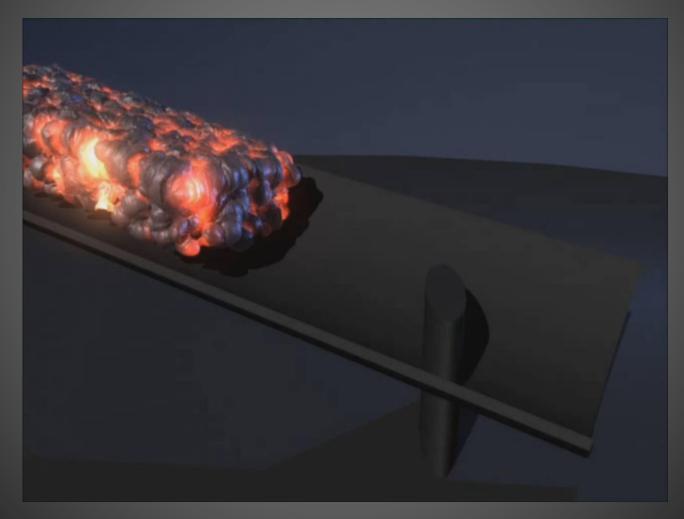
(February 2009)

Motivation

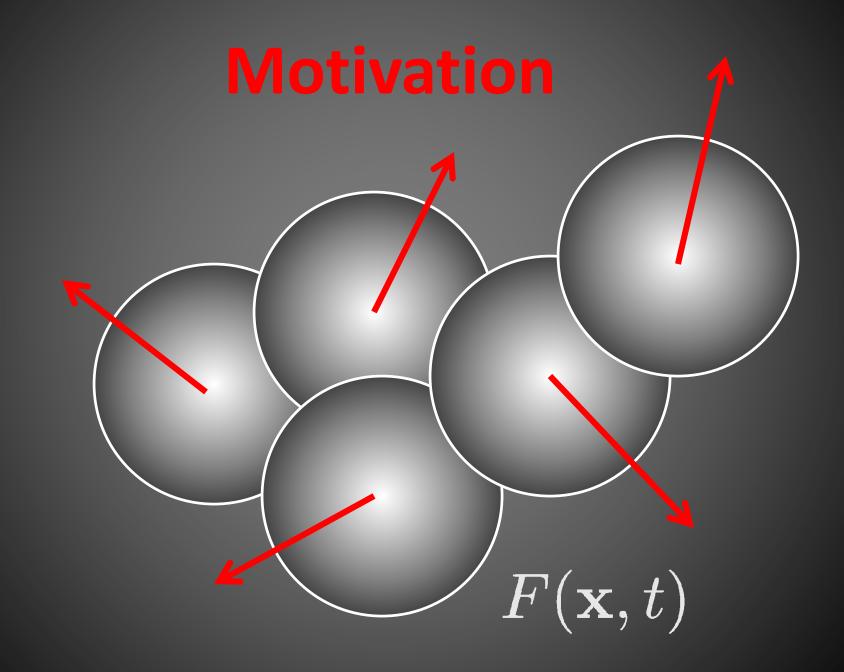


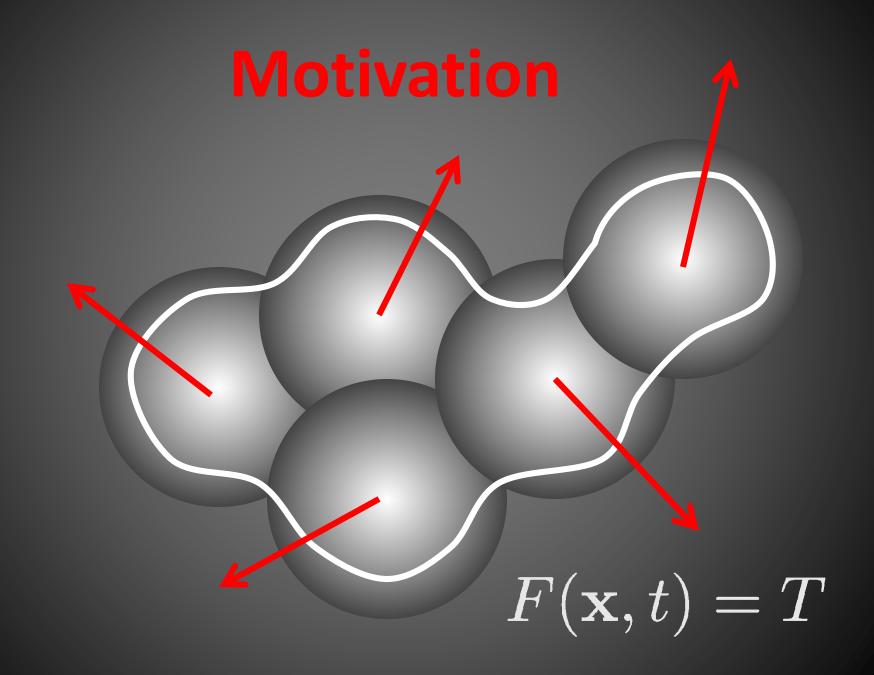
Created by Duncan Brinsmead using MAYA Nucleus.

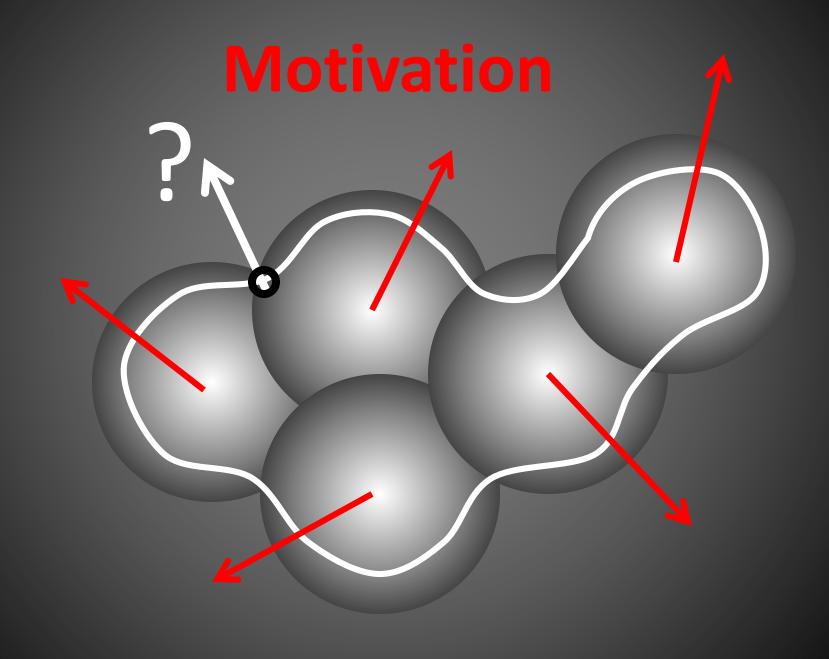
Motivation

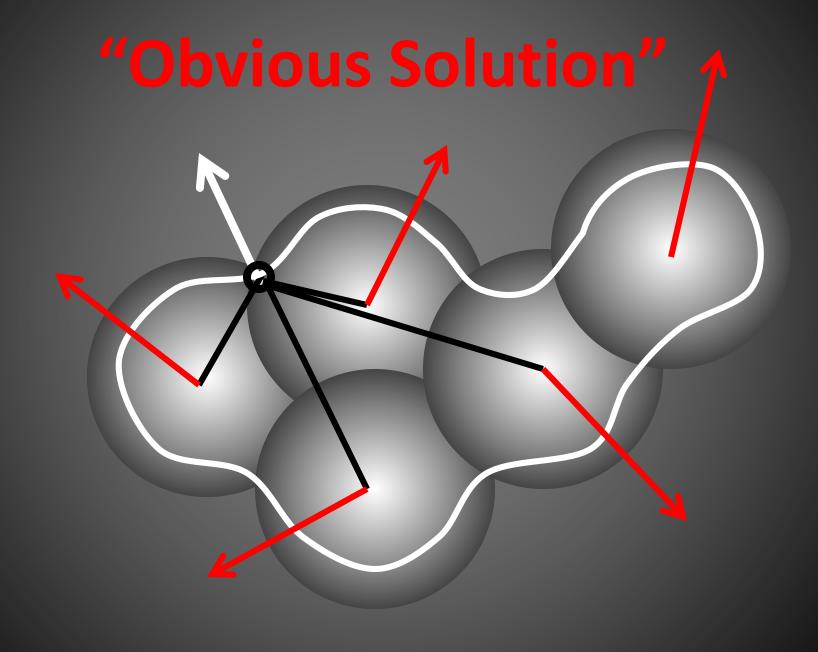


Created by Duncan Brinsmead using MAYA Nucleus.

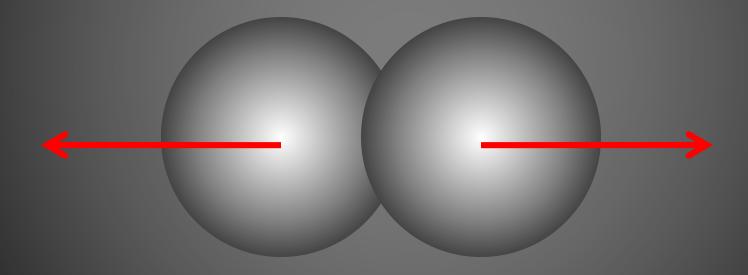




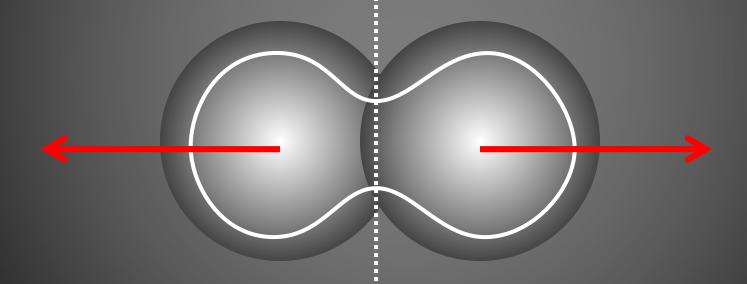




"Obvious Solution"

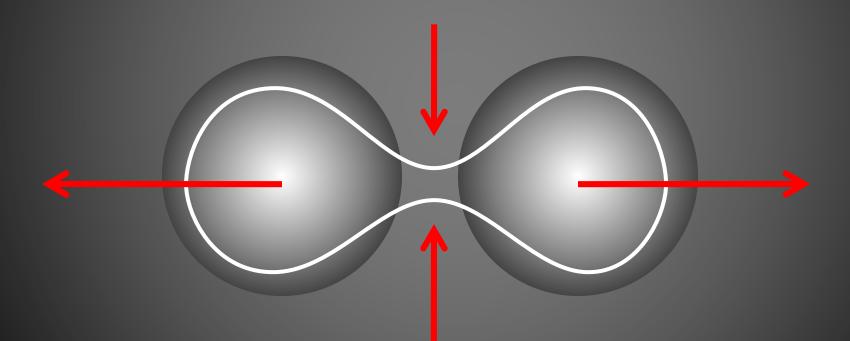


"Obvious Solution"

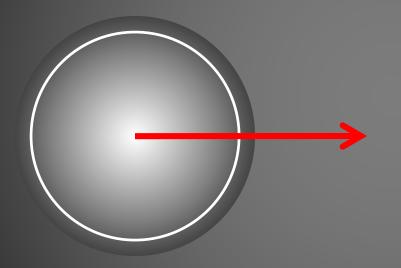


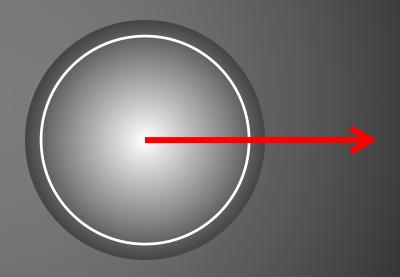
Predicts Zero velocity

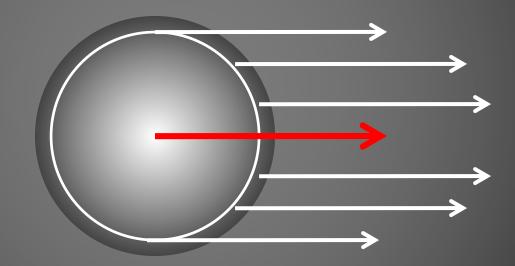
"Obvious Solution"



Actually: NON-Zero velocity







This is what we expect...

Time to formalize this stuff.

$\Gamma(t) = \{\mathbf{x} | F(\mathbf{x}, t) = 0\}$

Go beyond blobs: Time evolving Implicits.

$\dot{F}(\mathbf{x},t) = \dot{0} = 0$

$\frac{\partial F}{\partial t} + \nabla F \cdot \dot{\mathbf{x}} = 0$

$\nabla F \cdot \dot{\mathbf{x}} = -\frac{\partial F}{\partial t}$

$\dot{\mathbf{x}} = -(\nabla F)^{\dagger} \frac{\partial F}{\partial t}$

$A^{\dagger} = \left(A^T A\right)^{-1} A^T$

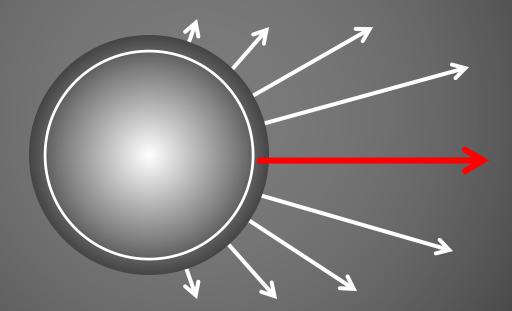
Moore-Penrose Pseudo-Inverse

$\dot{\mathbf{x}} = -\frac{\nabla F}{|\nabla F|^2} \frac{\partial F}{\partial t}$

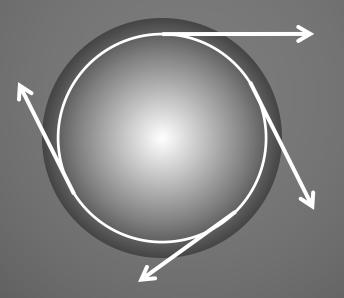
$\dot{\mathbf{x}} = a_F \mathbf{n}$

Fixes normal velocity

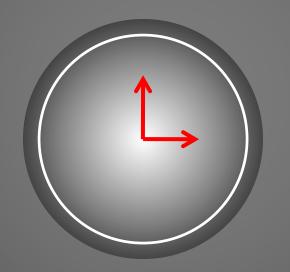
Back to Simple Example

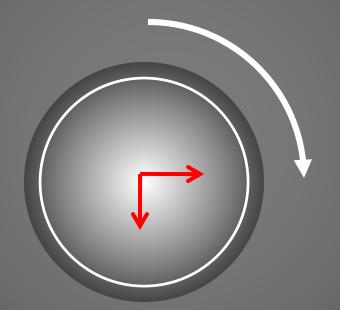


Normal velocity



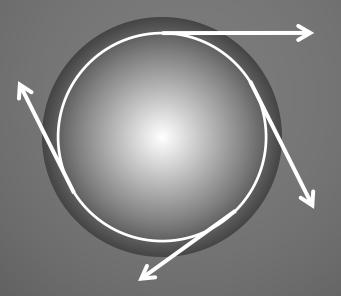
Tangential velocity does not change the shape.



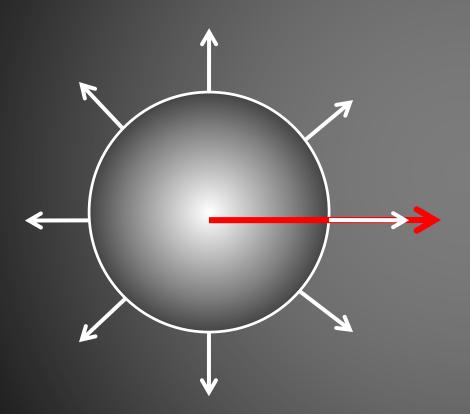


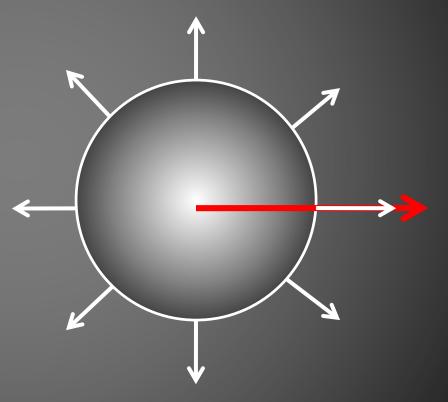
Tangential velocity **irrelevant** In Theory

Key Insight



Tangential velocity is **key** In Practice



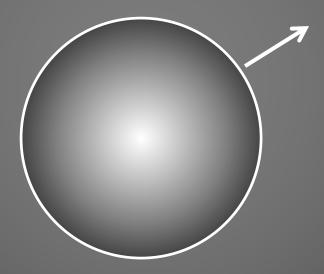


Normals do not change

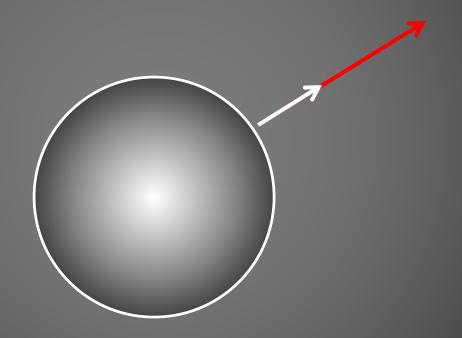
Add the constraint:

$\frac{d}{dt}\left(\mathbf{n}(\mathbf{x},t)\right) = 0$

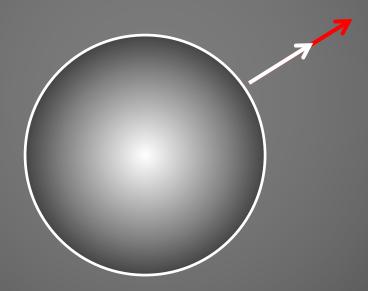
Why is this a sensible Idea?



Why is this a sensible Idea?

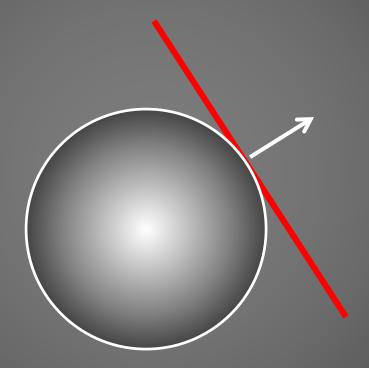


Why is this a sensible Idea?



Same normal.

Why is this a sensible Idea?



Fixes Tangential Component

Cool Math

$\frac{d}{dt}\left(\mathbf{n}(\mathbf{x},t)\right) = 0$

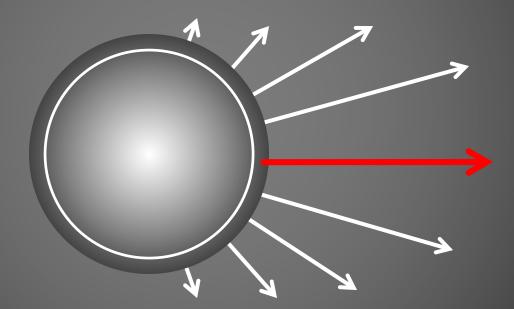
Normals do not change.

Cool Math

$\mathbf{P_n}\mathbf{H}_F \ \dot{\mathbf{x}} = -\mathbf{P_n} \ \frac{\partial}{\partial t} \nabla F,$

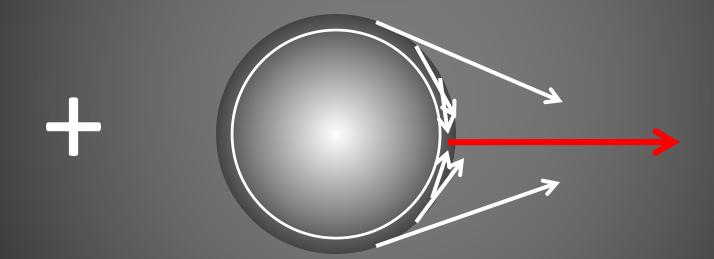
Formula for tangential velocity

Simple Example



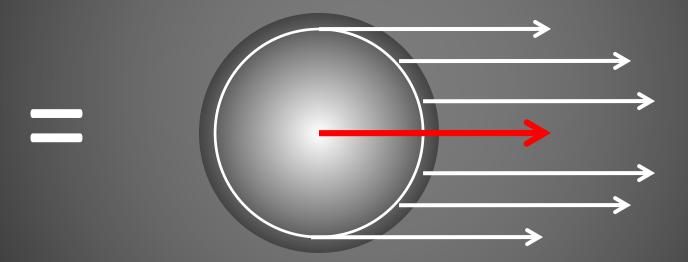
Normal velocity

Simple Example



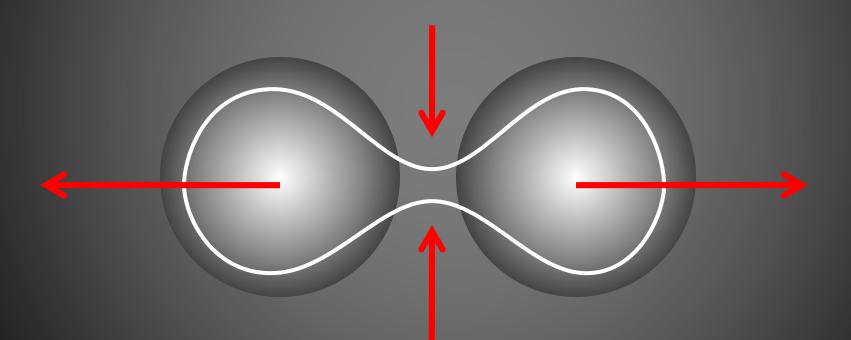
Tangential velocity

Simple Example



Total velocity

Back to "Obvious Solution"

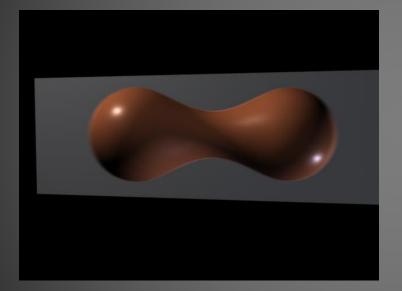


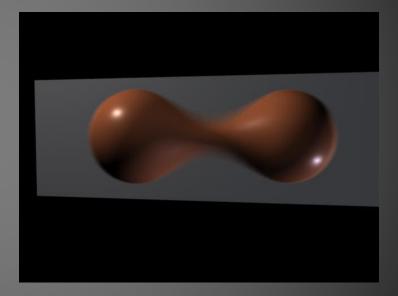
Add "obvious" tangential velocity to normal

Applications

Motion Blur

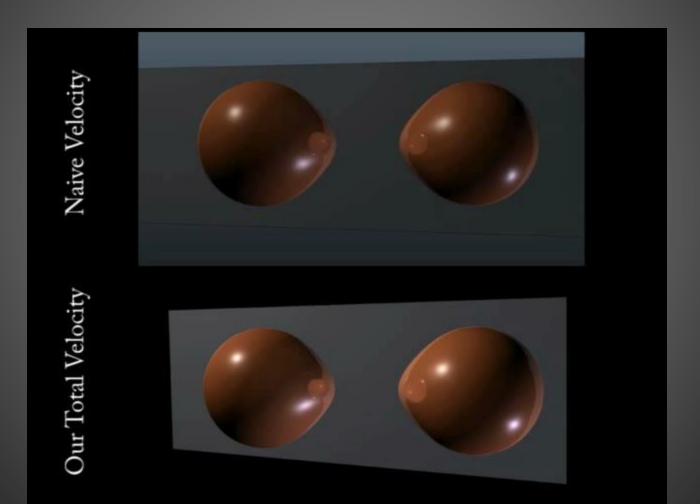
Particle Surface Tracking

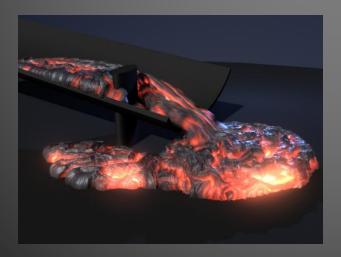


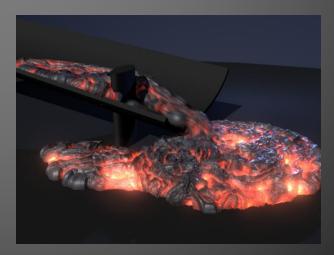


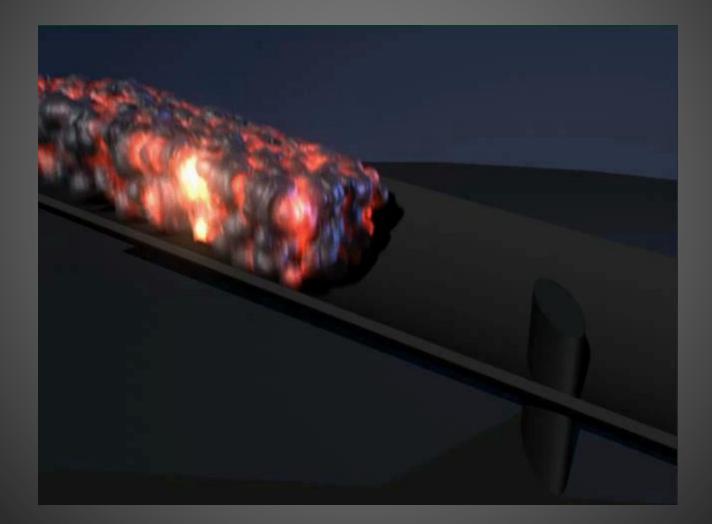
Naive Velocity

Total Velocity



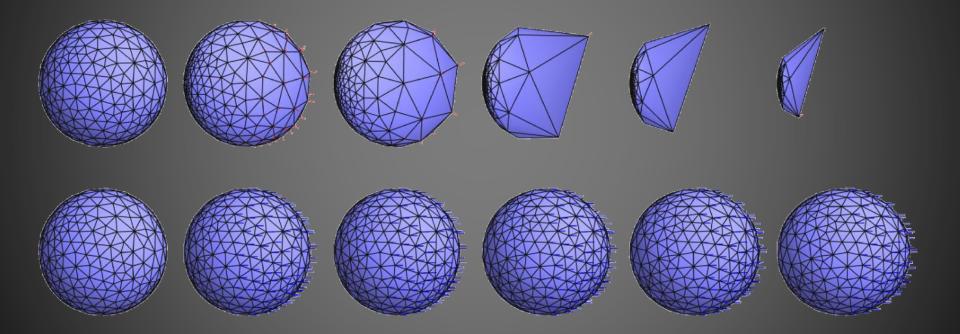






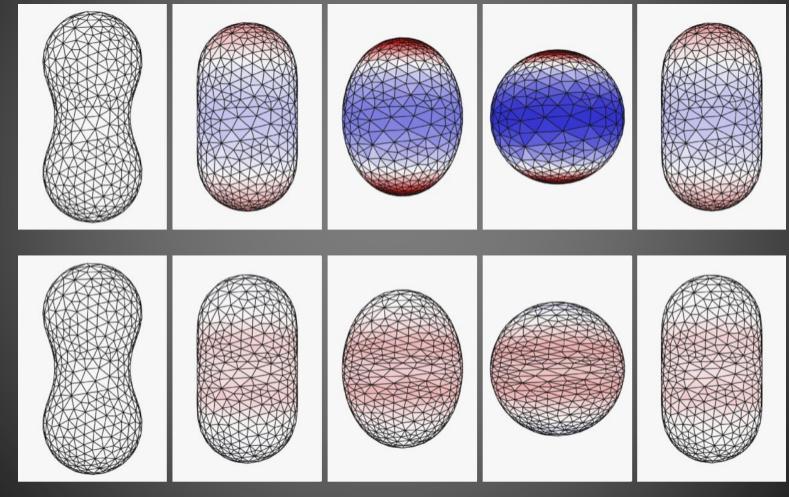
Particle Surface Tracking

Translation



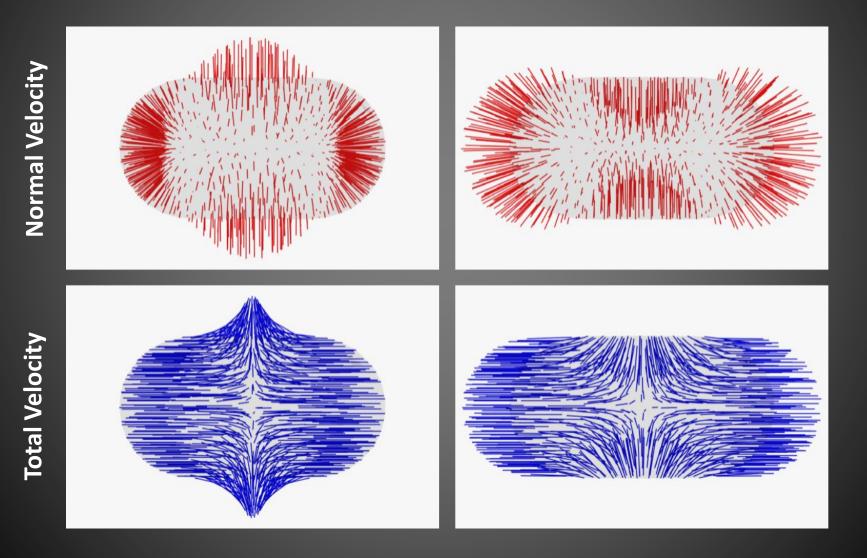
Normal Velocity

Total Velocity

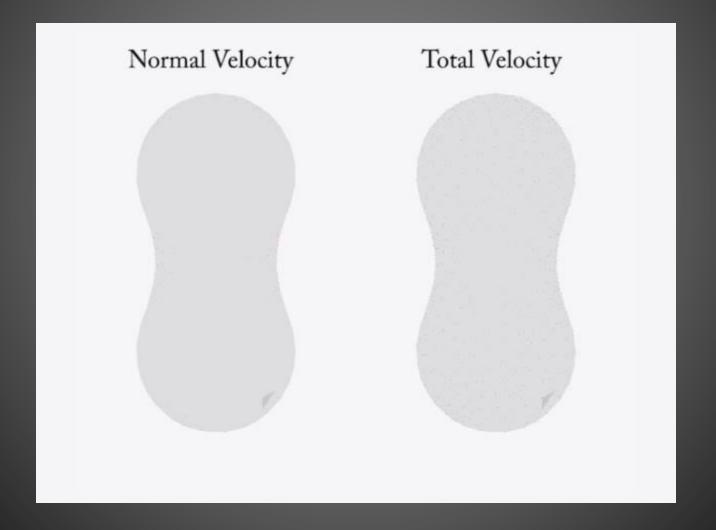


Deformation

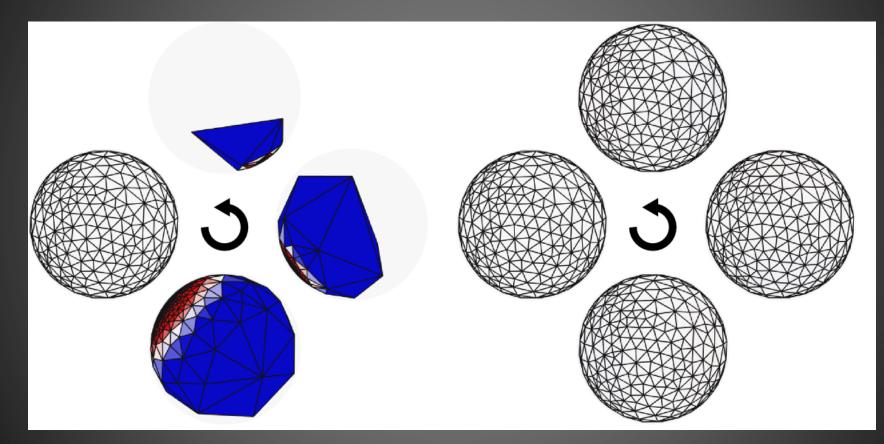
Deformation



Deformation



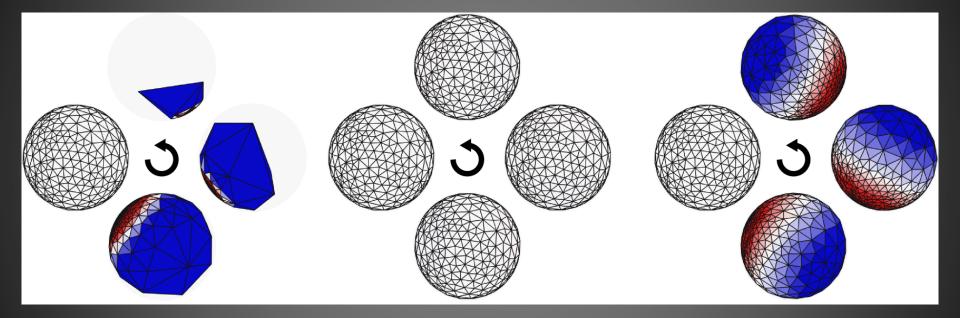
Rotation



Normal Velocity

Total Velocity

Rotation + Fairing



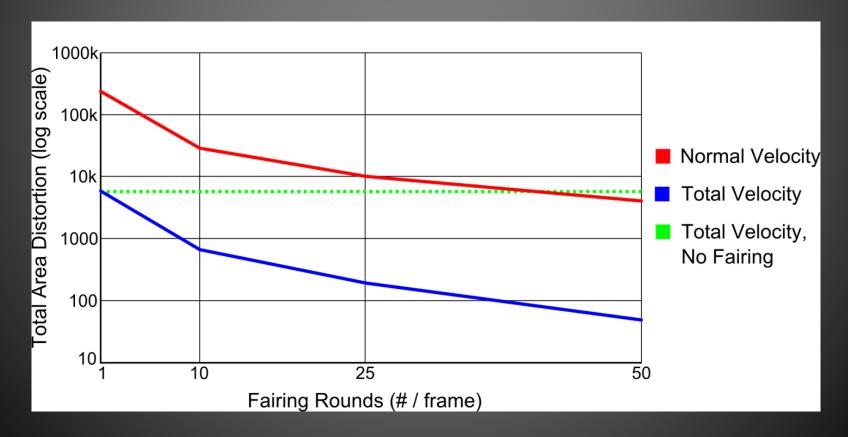
Normal Velocity

Total Velocity

Normal Velocity w/ Fairing

Rotation + Fairing

Need to do a lot of fairing to Normal Velocity to approach quality of Total Velocity

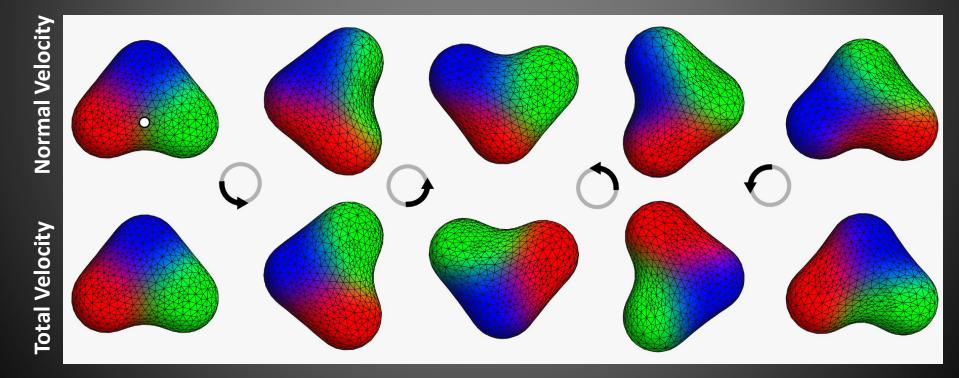


Rotation + Fairing

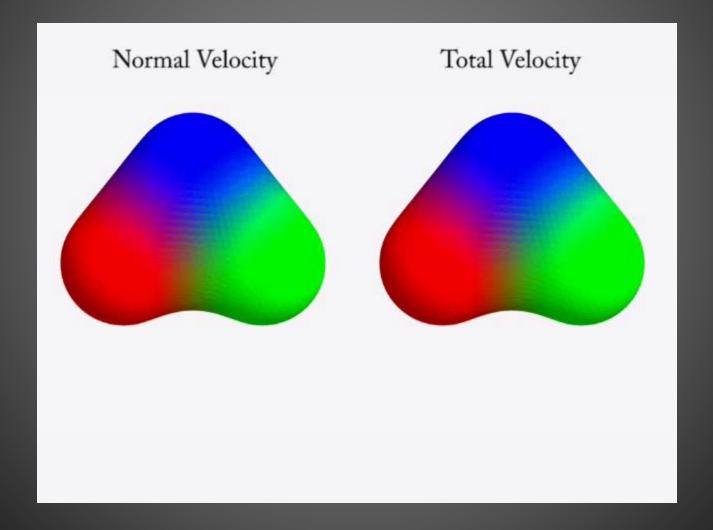
- Fairing is **Expensive**
- Total Velocity still needs a few rounds of fairing in more complex cases
- We can take bigger time steps and less fairing.

Tracking Stability

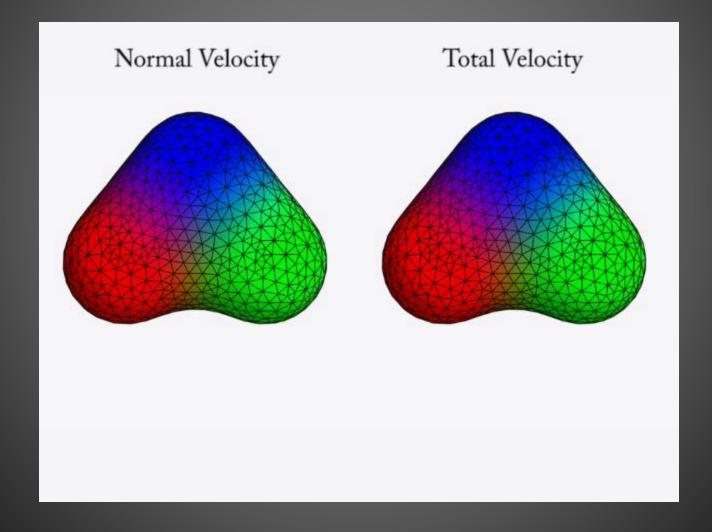
 Normal velocity exhibits much more 'sliding' around across moving surface



Tracking Stability

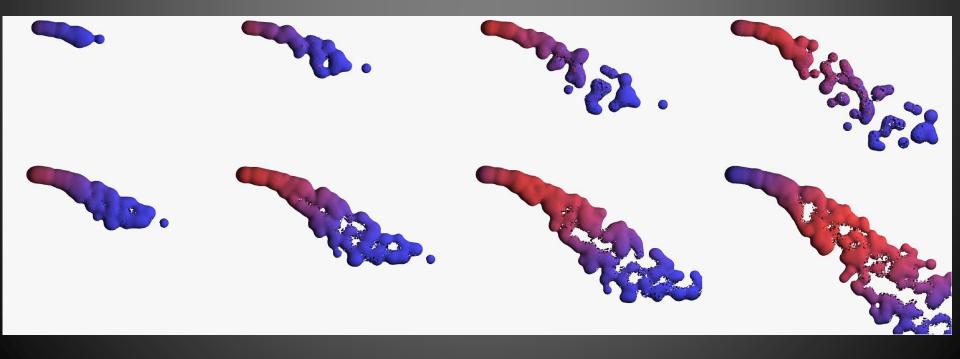


Tracking Stability

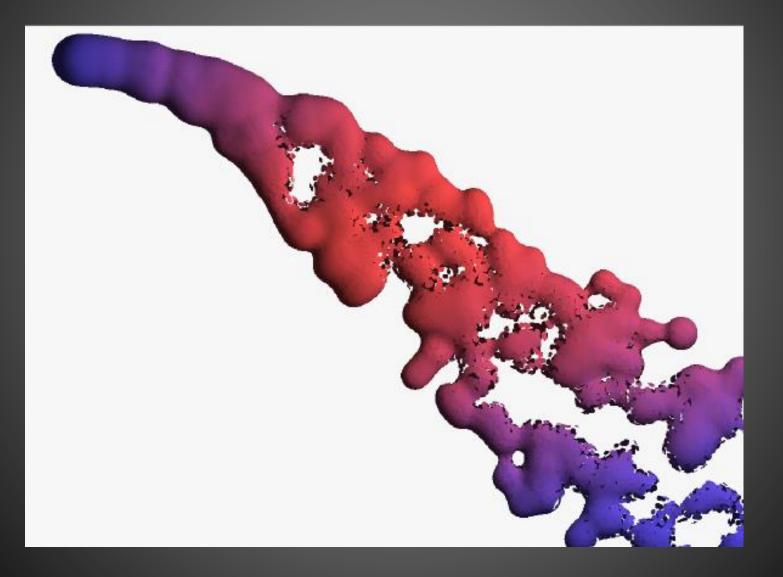


Complex Surface

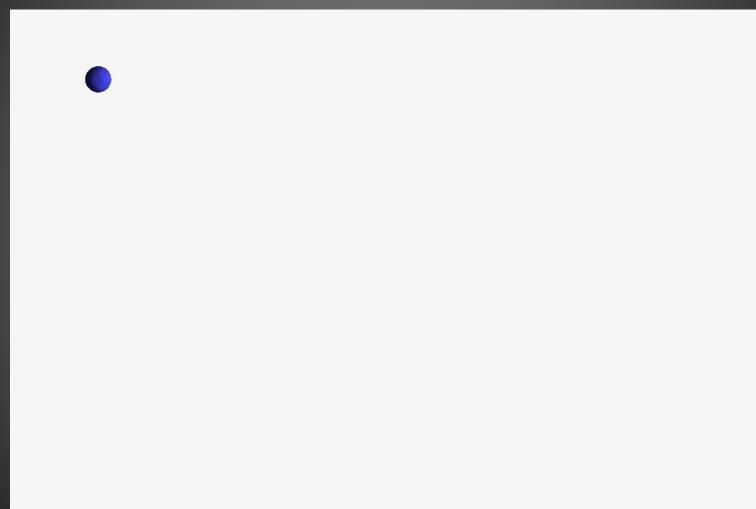
- Normal velocity immediately fails
- Total velocity maintains decent coverage, except where surface tears apart



Complex Surface



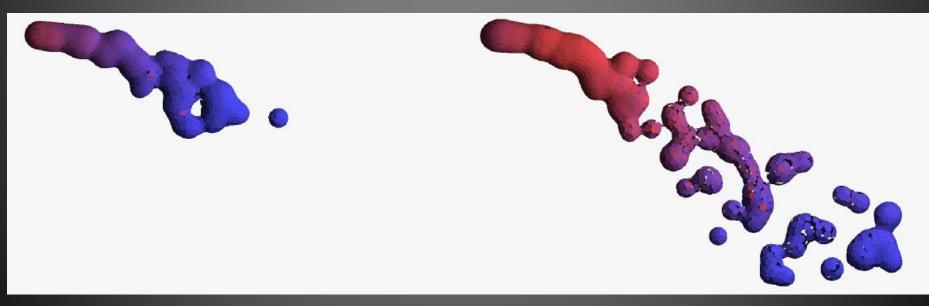
Complex Surface



Witkin-Heckbert Fairing

- Maintains better coverage
- Expensive

- Better performance maybe available (eg Meyer05)



Witkin-Heckbert Fairing

Conclusion

"What is the velocity of an Implicit Surface?"

Normal velocity is uniquely defined.

Free to set tangential velocity to meet your needs.

Future Work

Other tangent constraints? Theory? Just optimize?

Explore other functions than blobs

Stimulate more work in evolving implicit surfaces.

Thank You

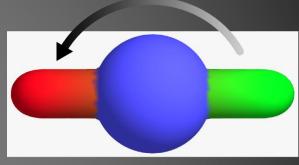
Merci

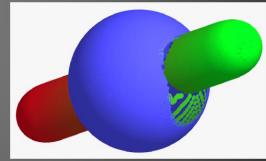
The End

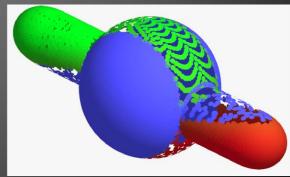
Questions?

Field Discontinuities

- Gradient undefined
- Problem? Not really:
 - with operators like min/max CSG, always returning one of the well-defined gradients
 - Sampling-based numerical gradients are defined across discontinuities
- In practice, particles just tend to bunch up at creases

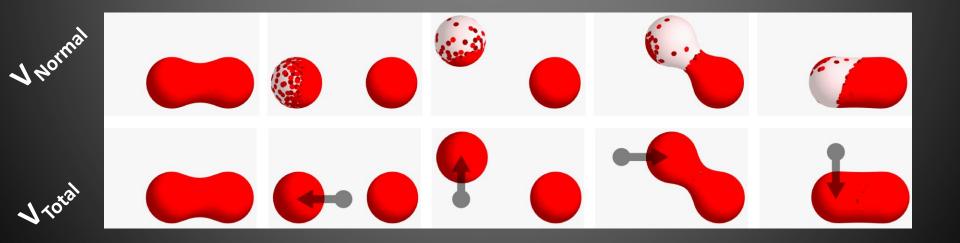




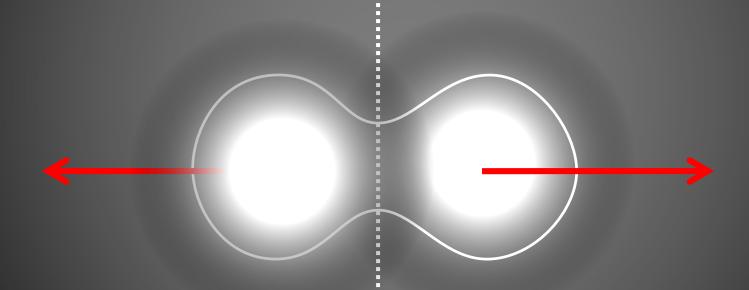


Interactive Visualization

- Infer velocity from interactive manipulations
- Total velocity generally maintains decent coverage during interaction
- Do Witkin-Heckbert redistribution during idle time

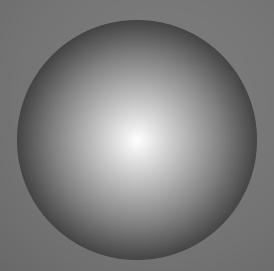


"Obvious Solution"

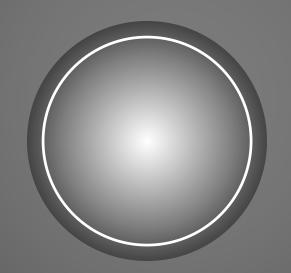


Zero velocity

Implicit Surface

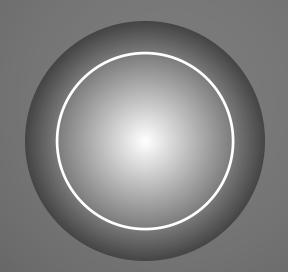


Implicit Surface



 $F(\mathbf{x}) = T_1$

Implicit Surface



$F(\mathbf{x}) = T_2$