Turbulent Wind Fields For Gaseous Phenomena

Jos Stam
Eugene Fiume

Department of Computer Science
University of Toronto
Toronto, Canada

Various Gaseous Phenomena

- Steam from coffee cup
- Cigarette smoke
- Clouds
- Human head (?)

Previous Work In Animating Gases

Animate Gas Directly

- Solid Textures (Ebert 90)
- Spectral Synthesis (Sakas 92)
 - ⇒ Expensive & Control Difficult

Use Wind Fields

- Smooth Wind Fields (Sims 90)
- Turbulent Wind Fields (Shinya & Fournier 92)
 - ⇒ Physics-Based

A New Model

Three interlocking models:

- Wind field model
- Interaction of gas with wind
- Rendering of the gas

Features of the implementation:

- Interactive modelling of wind field and gas motion
- Efficient and realistic rendering

Two-Scale Wind Field Model

$$\mathbf{u} = \mathbf{u}_{smooth} + \mathbf{u}_{turbulent}$$

- Smooth Field: "sketch" of motion
- Turbulent Field: realistic detail

inverse FFT method

Convolution of an uncorrelated field $W = (W_1, W_2, W_3)$ in frequency domain:

$$U_1 = H_{11}W_1$$

 $U_2 = H_{12}W_1 + H_{22}W_2$
 $U_3 = H_{13}W_1 + H_{23}W_2 + H_{33}W_3$

Space-time field is then obtained by

$$\mathbf{u}(\mathbf{x},t) = \text{inverseFFT}\{\mathbf{U}(\mathbf{k},\omega)\}$$

$$k = spatial frequency$$
 $\omega = temporal frequency$

Animation of Gas

Model the gas as a density distribution $\rho(x, t)$ of mass.

Evolution given by an advection-diffusion equation:

$$\frac{\partial \rho}{\partial t} = \underbrace{-\mathbf{u}\nabla\rho}_{\text{advection}} + \underbrace{\kappa\nabla^2\rho}_{\text{diffusion}} - \underbrace{\alpha\rho}_{\text{dissipation}}$$

Equation is linear in ρ

Solve Using Finite Differences

Disadvantages:

- 3D grid is memory intensive
- computationally expensive
- no interactive modelling

Model Gas as a Fuzzy Blobby

Effect on each blob:

Advection: centres move along wind field

Diffusion: size expands

Dissipation: mass decays

Rendering of Gas

- Ignore multiple-scattering.
- Can be efficiently implemented in a ray-tracer.

Render from Front to Back

$$au_{total} = 1$$
 $I_{gas} = 0$
for $i = 1$ to $N - 1$ do
 $I_{gas} = I_{gas} + au_{total}(1 - au_i)I_i$
 $au_{total} = au_{total} au_i$
end for
 $I_{total} = I_{gas} + au_{total} au_{lockeround}$

Efficient Computation of τ_i

$$\tau_i = T(d_{min}, t_{i+1}) - T(d_{min}, t_i)$$

$$T(d,t) = \exp\left(-\int_0^t \rho(R(s)) ds\right)$$

Use table lookup.

Results

- Slice of a wind field
- Interactive wind field modelling
- Interaction with objects
- Three coloured trails of smoke
- Coffee steam
- Cigarette smoke
- Turbulent morphing

Future Work

- More general turbulence
- Interaction between scales
- Multiple-scattering
- Improve performance of rendering
- Other gaseous phenomena
- Use wind fields to animate other phenomena